

J/ψ (μ⁺μ⁻) Polarization Study from d-Au Collisions at PHENIX/RHIC

Xiaorong Wang
New Mexico State University
for PHENIX Collaboration

QM2004, Oakland CA

Motivation for J/ψ Polarization Study

B.L. Loffe and D.E. Kharzeev:

Hep-ph/0306176: "Quarkonium Polarization in Heavy-ion collision as a possible signature of the QGP"

predicts that an increase of J/ψ polarization in heavy ion collision if the QGP is formed there.

The measurement of the angular distribution of decay leptons from J/ψ provides a detailed test of the production mechanism of the quarkonium bound state.

PHENIX detector has unique ability to study J/ψ production through $\mu^+\mu^-$ and e^+e^- decay channel. In the mean time, it also offer us an opportunity to study J/ψ polarization.

2

Motivation (Continued)

Theoretical Model Predictions:

- Quarkonium production cross section
 - Color Singlet Model (CSM): predicted smaller production rates than observed
 - Color Evaporation Model (CEM): failed in predicting production ratio of *c c* states
 - Non-relativistic QCD (NRQCD): using cross section to determine model parameters
- Quarkonium polarization
 - CSM: predicts transverse polarization
 - NRQCD: predicts transverse polarization at large p_T

3

Motivation (Continued)

Selected Experimental Observations:

- □ Fixed target experiments
 - E537, E672, E771:

 No significant polarization observed.
 - CIP:

Observed no polarization at small x_F and longitudinal polarization at large $x_{F.}$

E866:

Showed longitudinal polarized at large x_F and no polarization or slight transverse polarized small x_F .

□ Collider experiment (CDF)

Observed unpolarized at small p_T and longitudinal polarized at large p_T . This observation can't be explained by NRQCD theory.

Angular Distribution Parametrization

Angular distribution of muon pair in the J/ ψ rest frame is commonly parametrized as follows:

$$\frac{d\sigma}{d\cos\theta} \sim 1 + \lambda\cos^2\theta$$

 $\lambda < 0$ Longitudinal $\lambda = 0$ Unpolarized $\lambda > 0$ Transverse

 θ is the angle between the $p_{\mu^+}(p_{\mu^-})$ and the z axis in the J/ψ rest frame

5

J/ψ Rest Frame (Collins-Soper frame)

Viewed from J/ψ rest Frame

PHEINX Muon Arm Acceptance

South Arm: $-2.2 < \eta < -1.2$; North Arm: $1.2 < \eta < 2.4$

Muon Detector for Run-3

Invariant Mass Spectrum

- Unlike sign (+)
- **▲** like sign (+ +)
- ▼ like sign (--)

cosθ_{CS} Raw Distribution for Muon Pairs

Background Subtracted Raw $\cos \theta_{CS}$ Distribution

Background Subtraction:

Two p_T bins from 0 to 4 GeV

$$N = N^{+-} - 2 \times \sqrt{N^{++} \times N^{--}}$$

Acceptance Correction (Two-Stage Simulation)

- Generate first set of Monte Carlo events with flat p_T , x_F and flat $\cos\theta_{CS}$ distribution. These events were processed with the complete PHENIX simulation chain.
- Extract a correlated p_T and x_F distribution from the reconstructed J/ψ , which provides the correlated detector acceptance correction for J/ψ 's p_T and x_F distribution.
- This 2D distribution was then used to extract p_T and x_F distribution from real data.
- The second set of Monte Carlo events were generated with a flat $\cos \theta_{CS}$ distribution and the correlated p_T and x_F distribution obtained from the first step and MC2 events were also processes with the whole PHENIX offline analysis chain.
- All reconstructed J/ψ events were used to calculate the final acceptance correction for $\cos\theta_{CS}$ distribution.

cosθ_{CS} Distribution from Two-Stage Simulation

How Many J/ψ We Need for the Polarization Study

Test Procedure

- Generate given number of fake data points with a known λ value and Gaussian p_T and x_F distribution.
- Apply the two stage acceptance correction assuming perfect detector.
- Compare the statistical errors as a function of the given number of fake J/ψ input.

Statistics Error Study for Extracting \(\lambda \)

North 10k; $\lambda = 0.39 + -0.14(\lambda = 0.5)$

 $\cos \theta_{cs}$

1.8

1.6F

1.4

1.2

0.8

0.6

0.4

0.2

Input $\lambda = 0.5$

Uncertainty estimation:

1K: +/- 0.58

5K: +/- 0.21

10k: +/- 0.14

50k: +/- 0.07

Summary

- Presented raw angular distribution of PHENIX Run3 d-Au data.
- Developed the procedure of background subtraction and acceptance correction for PHENIX data.
- PHENIX detector has the unique ability to study J/ψ polarization, but we need to collect more J/ψ statistics.
- From a simple Monte Carlo simulation, we estimated that about $5k J/\psi$ events will be needed in each p_T and x_F bins to achieve a reasonable precision for the polarization parameter λ .